Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; : 123952, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641035

RESUMO

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and their counteractive implications against HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.

2.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466444

RESUMO

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Assuntos
Arsênio , Basidiomycota , Metais Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo
3.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266276

RESUMO

Chickpea (Cicer arietinum ) is a grain crop that is an important source of protein, vitamins, carbohydrates and minerals. It is highly sensitive to salt stress, and salt damage to cellular homeostasis and protein folding affects production. Plants have several mechanisms to prevent cellular damages under abiotic stresses, such as proteins in the endoplasmic reticulum (protein isulfide somerases (PDIs) and PDI-like proteins), which help prevent the build-up of mis-folded proteins that are damaged under abiotic stresses. In this study, we completed initial comprehensive genome-wide analysis of the chickpea PDI gene family. We found eight PDI genes are distributed on six out of eight chromosomes. Two pairs of paralogous genes were found to have segmental duplications. The phylogenetic analysis showed that the PDI s have a high degree of homology in C. arietinum, Cicer reticulatum, Lens culinaris, Phaseolus acutifolius, Pisum sativum and Oryza sativa . The gene structure analysis displayed that CaPDI1-CaPDI8 have 9-12 exons except for CaPDI5 , which has 25 exons. Subcellular localisation indicated accumulation of CaPDIs in endoplasmic reticulum. Protein-conserved motifs and domain analysis demonstrated that thioredoxin domains of PDI family is present in all CaPDIs. CaPDI proteins have strong protein-protein interaction. In silico expression analysis showed that four out of eight PDI genes (CPDI2, CaPDI6, CaPDI7 and CaPDI8 ) were expressed under salt stress. Of these, expression of CaPDI2 and CaPDI8 was the highest. This work indicated that PDI genes are involved in salt stress tolerance in chickpea and the CaPDIs may be further studied for their role of inducing salt tolerance.


Assuntos
Cicer , Isomerases de Dissulfetos de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Cicer/genética , Cicer/metabolismo , Filogenia , Estresse Salino/genética , Estresse Fisiológico/genética
4.
Rice (N Y) ; 16(1): 28, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354226

RESUMO

Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.

5.
Insects ; 14(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233082

RESUMO

Pollination is crucial for oil palm yield, and its efficiency is influenced by multiple factors, including the effectiveness of Elaeidobius kamerunicus weevils as pollinators in Southeast Asia. Weevils transfer pollen between male and female flowers, leading to successful fertilization and fruit development, which contributes to higher oil palm yields and increased production of valuable oil. Understanding and conserving the weevil population is important for sustainable oil palm cultivation practices. The interaction between pollinators, including weevils, and environmental factors is complex, involving aspects such as pollinator behavior, abundance, diversity, and effectiveness, which are influenced by weather, landscape composition, and pesticide use. Understanding these interactions is critical for promoting sustainable pollination practices, including effective pest management and maintaining optimal pollinator populations. This review discusses various abiotic and biotic factors that affect pollination and pollinators in oil palm plantations, with a particular focus on weevils as primary pollinators. Factors such as rainfall, humidity, oil palm species, temperature, endogamy, parasitic nematodes, insecticides, predators, and proximity to natural forests can impact the weevil population. Further research is recommended to fill knowledge gaps and promote sustainable pollination practices in the oil palm industry.

6.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176828

RESUMO

Plants use a variety of secondary metabolites to defend themselves against herbivore insects. Methyl salicylate (MeSA) is a natural plant-derived compound that has been used as a plant defence elicitor and a herbivore repellent on several crop plants. The aim of this study was to investigate the effect of MeSA treatment of Brassica rapa subsp. chinensis ('Hanakan' pak choi) on its interactions with peach potato aphids, Myzus persicae, and their natural enemy, Diaeretiella rapae. For this, we selected two concentrations of MeSA (75 mg/L and 100 mg/L). Our results showed that aphid performance was significantly reduced on plants treated with MeSA (100 mg/L). In a cage bioassay, the MeSA (100 mg/L)-treated plants showed lower adult survival and larviposition. Similarly, the MeSA (100 mg/L)-treated plants had a significantly lower aphid settlement in a settlement bioassay. In contrast, the M. persicae aphids did not show any significant difference between the MeSA (75 mg/L)-treated and control plants. In a parasitoid foraging bioassay, the parasitoid D. rapae also did not show any significant difference in the time spent on MeSA-treated and control plants. A volatile analysis showed that the MeSA treatment induced a significant change in volatile emissions, as high numbers of volatile compounds were detected from the MeSA-treated plants. Our results showed that MeSA has potential to induce defence in Brassica against M. persicae and can be utilised in developing sustainable approaches for the management of peach potato aphids.

7.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023649

RESUMO

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Assuntos
Arsênio , Oryza , Fósforo , Poluentes do Solo , Humanos , Arsênio/toxicidade , Cromatografia Líquida , Oryza/metabolismo , Oryza/microbiologia , Fósforo/análise , Raízes de Plantas/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem , Poluentes do Solo/toxicidade
8.
Plant Physiol Biochem ; 196: 634-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791535

RESUMO

Barley (Hordeum vulgare L.) is one of the most important cereal crop in the world, and is also the one being seriously affected by heavy metals, particularly aluminium (Al). Keeping in view the utility of barley as food, fodder and raw material for traditional beer brewing, the top-notch quality and higher production of this crop must be sustained. Phosphorus (P) has a quintessential role in plant growth with a potential to relieve symptoms caused by Al poisoning. Displaying a phytopromotive and stress alleviatory potential, Piriformospora indica (P. indica) can improve the stress tolerance in crops. Several studies have been conducted to evaluate the mechanism of Al translocation in a variety of crops including barley, however, the bio-remediative studies related to detoxification and/or sequestration of metals are scarce. Therefore, the current study was carried out to elucidate the tolerance mechanism of an Al-sensitive barley cultivar ZU9 following the colonization with P. indica and exogenous P supply by physio-biochemical, elemental, leaf ultrastructural and root proteome analyses. When compared to the Al alone treated counterparts, the Al + P + P.i treated plants exhibited 4.1-, 1.38-, 2.7 and 1.35-fold improved root and shoot fresh and dry weights, respectively. With the provision of additional phosphorus, the content of P in the root and shoot for Al + P + P.i group was reportedly higher (71.6% and 49.5%, respectively) as compared to the control group. Moreover, inoculation of P. indica combined with P improved barley leaves' cell arrangement and also maintained normal cell wall shape. The root protemics experiment was divided into three groups: Al, Al + P.i and Al + P + P.i. In total, 28, 598, and 823 differentially expressed proteins were found in Al + P.i vs. Al and Al + P + P.i vs. Al, and phenylpropanoid biosynthesis was the most prominently enriched pathway, which contributed significantly to the recuperating effects of P-P. indica interaction. Conslusively, it was found that the percentage of protein related to peroxidase was 70/359 (Al + P + P.i vs. Al) and 92/447 (Al + P + P.i vs. Al + P.i), respectively, which indicated that P. indica in combination with P might be involved in the regulation of peroxidases, increasing the adaptability of barley plants by enhanced reactive oxygen species (ROS) scavenging mechansism.


Assuntos
Basidiomycota , Hordeum , Hordeum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Fósforo/metabolismo , Proteômica , Basidiomycota/fisiologia , Estresse Fisiológico
9.
Front Plant Sci ; 13: 1003534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212279

RESUMO

Nutritional correlations between plants and pathogens can crucially affect disease severity. As an essential macronutrient, the availability of nitrogen (N) and the types of N content play a fundamental part not only in energy metabolism and protein synthesis but also in pathogenesis. However, a direct connection has not yet been established between differences in the level of resistance and N metabolism. Pertinently, former studies hold ammonia (NH3) accountable for the development of diseases in tobacco (Nicotiana tabacum L.) and in some post-harvest fruits. With a purpose of pinpointing the function of NH3 volatilization on Alternaria alternata (Fries) Keissl pathogenesis and its correlation with both N metabolism and resistance differences to Alternaria alternata infection in tobacco, leaf tissue of two tobacco cultivars with susceptibility (Changbohuang; CBH), or resistance (Jingyehuang; JYH) were analyzed apropos of ammonia compensation point, apoplastic NH4 + concentration, pH value as well as activities of key enzymes and N status. At the leaf age of 40 to 60 d, the susceptible cultivar had a significantly higher foliar apoplastic ammonium (NH4 +) concentration, pH value and NH3 volatilization potential compared to the resistant one accompanied by a significant reduction in glutamine synthetase (GS), which in particular was a primary factor causing the NH3 volatilization. The NH4 + concentration in CBH was 1.44 times higher than that in JYH, and CBH had NH3 compensation points that were 7.09, 6.15 and 4.35-fold higher than those of JYH at 40, 50 and 60 d, respectively. Moreover, the glutamate dehydrogenase (GDH) activity had an upward tendency related to an increased NH4 + accumulation in both leaf tissues and apoplast but not with the NH3 compensation point. Collectively, our results strongly suggest that the accumulation of NH3 volatilization, rather than NH4 + and total N, was the primary factor inducing the Alternaria alternata infection in tobacco. Meanwhile, the susceptible cultivar was characterized by a higher N re-transfer ability of NH3 volatilization, in contrast to the disease-resistant cultivar, and had a stronger capability of N assimilation and reutilization. This study provides a deeper understanding of the pathogenicity mechanism induced by Alternaria alternata, which is useful for breeding Alternaria alternata-resistant varieties of tobacco, at the same time, our research is also conducive to control tobacco brown spot caused by Alternaria alternata in the field.

10.
Front Plant Sci ; 13: 982668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147244

RESUMO

In the context of eco-sustainable acquisition of food security, arsenic (As) acts as a deterring factor, which easily infiltrates our food chain via plant uptake. Therefore, devising climate-smart strategies becomes exigent for minimizing the imposed risks. Pertinently, Serendipita indica (S. indica) is well reputed for its post-symbiotic stress alleviatory and phyto-promotive potential. Management of phosphorus (P) is acclaimed for mitigating arsenic toxicity in plants by inhibiting the uptake of As molecules due to the competitive cationic exchange in the rhizosphere. The current study was designed to investigate the tandem effects of S. indica and P in combating As toxicity employing two rice genotypes, i.e., Guodao-6 (GD-6; As-sensitive genotype) and Zhongzhe You-1 (ZZY-1; As-tolerant genotype). After successful fungal colonization, alone and combined arsenic (10 µ M L-1) and phosphorus (50 µ M L-1) treatments were applied. Results displayed that the recuperating effects of combined S. indica and P treatment were indeed much profound than their alone treatments; however, most of the beneficial influences were harnessed by ZZY-1 in comparison with GD-6. Distinct genotypic differences were observed for antioxidant enzyme activities, which were induced slightly higher in S. indica-colonized ZZY-1 plants, with or without additional P, as compared to GD-6. Ultrastructure images of root and shoot exhibited ravages of As in the form of chloroplasts-, nuclei-and cell wall-damage with enlarged vacuole area, mellowed mostly by the combined treatment of S. indica and P in both genotypes. Gene expression of PHTs family transporters was regulated at different levels in almost all treatments across genotypes. Conclusively, the results of this study validated the promising role of S. indica and additional P in mitigating As stress, albeit corroborated that the extent of relevant benefit exploitation is highly genotype-dependent. Verily, unlocking the potential of nature-friendly solutions will mend the anthropogenic damage already been done to our environment.

11.
Front Microbiol ; 13: 920109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966692

RESUMO

Phyllospheric microbial composition of tobacco (Nicotiana tabacum L.) is contingent upon certain factors, such as the growth stage of the plant, leaf position, and cultivar and its geographical location, which influence, either directly or indirectly, the growth, overall health, and production of the tobacco plant. To better understand the spatiotemporal variation of the community and the divergence of phyllospheric microflora, procured from healthy and diseased tobacco leaves infected by Alternaria alternata, the current study employed microbe culturing, high-throughput technique, and BIOLOG ECO. Microbe culturing resulted in the isolation of 153 culturable fungal isolates belonging to 33 genera and 99 bacterial isolates belonging to 15 genera. High-throughput sequencing revealed that the phyllosphere of tobacco was dominantly colonized by Ascomycota and Proteobacteria, whereas, the most abundant fungal and bacterial genera were Alternaria and Pseudomonas. The relative abundance of Alternaria increased in the upper and middle healthy groups from the first collection time to the third, whereas, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium from the same positions increased during gradual leaf aging. Non-metric multi-dimensional scaling (NMDs) showed clustering of fungal communities in healthy samples, while bacterial communities of all diseased and healthy groups were found scattered. FUNGuild analysis, from the first collection stage to the third one in both groups, indicated an increase in the relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Pathotroph-Symbiotroph. Inclusive of all samples, as per the PICRUSt analysis, the predominant pathway was metabolism function accounting for 50.03%. The average values of omnilog units (OUs) showed relatively higher utilization rates of carbon sources by the microbial flora of healthy leaves. According to the analysis of genus abundances, leaf growth and leaf position were the important drivers of change in structuring the microbial communities. The current findings revealed the complex ecological dynamics that occur in the phyllospheric microbial communities over the course of a spatiotemporal varying environment with the development of tobacco brown spots, highlighting the importance of community succession.

12.
Ecotoxicol Environ Saf ; 230: 113128, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979311

RESUMO

Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 µM) and Cd15+Zn50 (50 µM) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production.

13.
J Hazard Mater ; 424(Pt C): 126511, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246522

RESUMO

Heavy metal accumulation in arable lands and water bodies has become one of the serious global issues among multitude of food security challenges. In particular, cadmium (Cd) concentration has been increasing substantially in the environment that negatively affects the growth and yield of important agricultural crops, especially wheat (Triticum aestivum L.). No doubt, nanotechnology is a revolutionary science but the comprehension of nanoparticle-plants interaction and its potential alleviatory role against metal stress is still elusive. Here, we investigated the mechanistic role of astaxanthin nanoparticles (AstNPs) in Cd stress amelioration and their interaction with wheat under Cd-spiked conditions. The AstNPs fabrication was confirmed through ultraviolet visible spectroscopy, where the particles showed characteristic peak at 423 nm. However, Fourier transform infrared, X-ray diffraction, scanning electron microscopy and transmission electron microscopy analyses confirmed the presence of stabilized spherical-shaped nanocrystals of AstNPs within the size range of 12.03-30.37 nm. The hydroponic application of AstNPs (100 mg L-1) to Cd-affected wheat plants increased shoot height (59%), shoot dry weight (31%), nitrogen concentration (42%), and phosphorus concentration (26%) as compared to non-treated Cd affected seedlings. Moreover, AstNPs-treated plants showed reduction in acropetal Cd translocation (29%) in contrast to plants treated with Cd only. Under Cd-spiked conditions, AstNPs-treated plants displayed an improved nutrient profile (P, N, K+ and Ca2+) with a relative decrease in Na+ content in comparison with non-treated plants. Interestingly, it was found that AstNPs restricted the translocation of Cd to aerial plant parts by negatively regulating Cd transporter genes (TaHMA2 and TaHMA3), and relieved plants from oxidative burst by activating antioxidant machinery via triggering expressions of TaSOD and TaPOD genes. Consequently, it was observed that the application of AstNPs helped in maintaining the nutrient acquisition and ionic homeostasis in Cd-affected wheat plants, which subsequently improved the physiochemical profiles of plants under Cd-stress. This study suggests that AstNPs plausibly serve as stress stabilizers for plants under heavy metal-polluted environment.


Assuntos
Nanopartículas , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Nanopartículas/toxicidade , Plântula/química , Poluentes do Solo/análise , Triticum , Xantofilas
14.
Front Microbiol ; 12: 699699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721315

RESUMO

A Myriad of biotic and abiotic factors inevitably affects the growth and production of tobacco (Nicotiana tabacum L.), which is a model crop and sought-after worldwide for its foliage. Among the various impacts the level of disease severity poses on plants, the influence on the dynamics of phyllospheric microbial diversity is of utmost importance. In China, recurring reports of a phyto-pathogen, Didymella segeticola, a causal agent of tobacco leaf spot, accentuate the need for its in-depth investigation. Here, a high-throughput sequencing technique, IonS5TMXL was employed to analyze tobacco leaves infected by D. segeticola at different disease severity levels, ranging from T1G (least disease index) to T4G (highest disease index), in an attempt to explore the composition and diversity of phyllospheric microbiota. In all healthy and diseased tobacco leaves, the most dominant fungal phylum was Ascomycota with a high prevalence of genus Didymella, followed by Boeremia, Meyerozyma and Alternaria, whereas in the case of bacterial phyla, Proteobacteria was prominent with Pseudomonas being a predominant genus, followed by Pantoea. The relative abundance of fungi, i.e., Didymella and Boeremia (Ascomycota) and bacteria, i.e., Pseudomonas and Pantoea (Proteobacteria) were higher in diseased groups compared to healthy groups. Healthy tissues exhibited relatively rich and diverse fungal communities in contrast with diseased groups. The infection of D. segeticola had a complex and significant effect on fungal as well as bacterial alpha diversity. FUNGuild analysis indicated that the relative abundance of pathotrophs and saprotrophs in diseased tissues proportionally increased with disease severity. PICRUSt analysis of diseased tissues indicated that the relative abundance of bacterial cell motility and membrane transport-related gene sequences elevated with an increase in disease severity from T1G to T3G and then tended to decrease at T4G. Conclusively, the current study shows the typical characteristics of the tobacco leaf microbiome and provides insights into the distinct microbiome shifts on tobacco leaves infected by D. segeticola.

15.
Ecotoxicol Environ Saf ; 220: 112390, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098428

RESUMO

Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.


Assuntos
Basidiomycota/fisiologia , Cádmio/toxicidade , Oryza/efeitos dos fármacos , Oryza/microbiologia , Raízes de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismo , Poluentes Ambientais/toxicidade , Malondialdeído/metabolismo , Oryza/metabolismo , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteômica , Plântula/metabolismo , Simbiose
16.
BMC Genomics ; 22(1): 60, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468056

RESUMO

BACKGROUND: Efficient regulation of bacterial genes in response to the environmental stimulus results in unique gene clusters known as operons. Lack of complete operonic reference and functional information makes the prediction of metagenomic operons a challenging task; thus, opening new perspectives on the interpretation of the host-microbe interactions. RESULTS: In this work, we identified whole-genome and metagenomic operons via MetaRon (Metagenome and whole-genome opeRon prediction pipeline). MetaRon identifies operons without any experimental or functional information. MetaRon was implemented on datasets with different levels of complexity and information. Starting from its application on whole-genome to simulated mixture of three whole-genomes (E. coli MG1655, Mycobacterium tuberculosis H37Rv and Bacillus subtilis str. 16), E. coli c20 draft genome extracted from chicken gut and finally on 145 whole-metagenome data samples from human gut. MetaRon consistently achieved high operon prediction sensitivity, specificity and accuracy across E. coli whole-genome (97.8, 94.1 and 92.4%), simulated genome (93.7, 75.5 and 88.1%) and E. coli c20 (87, 91 and 88%,), respectively. Finally, we identified 1,232,407 unique operons from 145 paired-end human gut metagenome samples. We also report strong association of type 2 diabetes with Maltose phosphorylase (K00691), 3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase (K21279) and an uncharacterized protein (K07101). CONCLUSION: With MetaRon, we were able to remove two notable limitations of existing whole-genome operon prediction methods: (1) generalizability (ability to predict operons in unrelated bacterial genomes), and (2) whole-genome and metagenomic data management. We also demonstrate the use of operons as a subset to represent the trends of secondary metabolites in whole-metagenome data and the role of secondary metabolites in the occurrence of disease condition. Using operonic data from metagenome to study secondary metabolic trends will significantly reduce the data volume to more precise data. Furthermore, the identification of metabolic pathways associated with the occurrence of type 2 diabetes (T2D) also presents another dimension of analyzing the human gut metagenome. Presumably, this study is the first organized effort to predict metagenomic operons and perform a detailed analysis in association with a disease, in this case type 2 diabetes. The application of MetaRon to metagenomic data at diverse scale will be beneficial to understand the gene regulation and therapeutic metagenomics.


Assuntos
Diabetes Mellitus Tipo 2 , Metagenômica , Escherichia coli/genética , Humanos , Metagenoma , Óperon/genética
17.
Plants (Basel) ; 10(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406626

RESUMO

Excessive industrialization and the usage of pesticides plague the farming soils with heavy metals, reducing the quality of arable land. Assessing phytoavailability of cadmium (Cd) from growth medium to plant system is crucial and necessitates precise and timely monitoring of Cd to ensure food safety. Zinc (Zn) and silicon (Si) have singularly demonstrated the potential to ameliorate Cd toxicity and are important for agricultural production, human health, and environment in general. However, Zn-Si interaction on Cd toxicity alleviation, their effects and underlying mechanisms are still fragmentarily understood. Seven treatments were devised besides control to evaluate the single and combined effects of Zn and Si on the physio-biochemical attributes and ultrastructural fingerprints of Cd-treated rice genotypes, i.e., Cd tolerant "Xiushui-110" and Cd sensitive "HIPJ-1". Supplementation of both Zn and Si promoted plant biomass, photosynthetic parameters, ionic balance, and improved chloroplast ultrastructure with minimized Cd uptake and malondialdehyde (MDA) content due to the activation of antioxidant enzymes in Cd stressed plants. The combined effects of 10 µM Zn and 15 µM Si on 15 µM Cd displayed a greater reduction in Cd uptake and root-leaf MDA content, while enhancing photosynthetic activity, superoxide dismutase (SOD) activity and root-leaf ultrastructure particularly in HIPJ-1, whilst Xiushui-110 had an overall higher leaf catalase (CAT) activity and a higher root length and shoot height was observed in both genotypes compared to the Cd 15 µM treatment. Alone and combined Zn and Si alleviation treatments reduced Cd translocation from the root to the stem for HIPJ-1 but not for Xiushui-110. Our results confer that Zn and Si singularly and in combination are highly effective in reducing tissue Cd content in both genotypes, the mechanism behind which could be the dilution effect of Cd due to improved biomass and competitive nature of Zn and Si, culminating in Cd toxicity alleviation. This study could open new avenues for characterizing interactive effects of simultaneously augmented nutrients in crops and provide a bench mark for crop scientists and farmers to improve Cd tolerance in rice.

18.
Environ Pollut ; 265(Pt B): 114979, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585549

RESUMO

Understanding of cadmium (Cd) uptake mechanism and development of lower Cd crop genotypes are crucial for combating its phytotoxicity and meeting 70% increase in food demand by 2050. Bio-accumulation of Cd continuously challenges quality of life specifically in regions without adequate environmental planning. Here, we investigated the mechanisms operating in Cd tolerance of two rice genotypes (Heizhan-43 and Yinni-801). Damage to chlorophyll contents and PSII, histochemical staining and quantification of reactive oxygen species (ROS), cell viability and osmolyte accumulation were studied to decipher the interactions between Cd and zinc (Zn) by applying two Cd and two Zn levels (alone as well as combined). Cd2+ and Ca2+ fluxes were also measured by employing sole Cd100 (100 µmol L-1) and Zn50 (50 µmol L-1), and their combination with microelectrode ion flux estimation (MIFE) technique. Cd toxicity substantially reduced chlorophyll contents and maximal photochemical efficiency (Fv/Fm) compared to control plants. Zn supplementation reverted the Cd-induced toxicity by augmenting osmoprotectants and interfering with ROS homeostasis under combined treatments, particularly in Yinni-801 genotype. Fluorescence microscopy indicated a unique pattern of live and dead root cells, depicting more damage with Cd10, Cd15 and Cd15+Zn50. Our results confer that Cd2+ impairs the uptake of Ca2+ whereas, Zn not only competes with Cd2+ but also Ca2+, thereby modifying ion homeostasis in rice plants. This study suggests that exogenous application of Zn is beneficial for rice plants in ameliorating Cd toxicity in a genotype and dose dependent manner by minimizing ROS generation and suppressing collective oxidative damage. The observations confer that Yinni-801 performed better than Heizhan-43 genotype mainly under combined Zn treatments with low-Cd, presenting Zn fortification as a solution to increase rice production.


Assuntos
Oryza , Fotossíntese , Cádmio , Cátions , Homeostase , Cinética , Qualidade de Vida , Espécies Reativas de Oxigênio , Zinco
19.
Genomics ; 112(5): 3075-3088, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454168

RESUMO

Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.


Assuntos
Temperatura Alta , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteômica , /metabolismo
20.
Food Chem ; 323: 126862, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32334297

RESUMO

Phenolic compounds in barley grains have an important influence on beer flavor and stability. Drought condition enhances the content of phenolics in barley grains, leading to reduced malt quality. In this study, two barley genotypes, XZ20 and XZ25 with different total phenolics content were used to investigate the effect of drought on phenolic compounds during grain developing stage. Totally, 118 phenolic metabolites were affected by drought stress. A weighted gene co-expression network analysis (WGCNA) of 17,424 highly expressed genes uncovered black (two hub genes belonged to UGT family) and turquoise modules (three hub genes belonged to phenolics pathway) that are significantly associated with the variation of phenolics. All these results reveal the changes of phenolic metabolites during grain development and provide a new insight into the regulation network of phenolic compounds under drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...